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A two-dimensional model of mode-III crack propagation with a velocity strengthening surface
friction is investigated theoretically. Using the Wiener-Hopf technique developed by Langer and
Nakanishi [Phys. Rev. E 48, 439 (1993)] with the condition that the stress should not diverge at
the crack tip, we determine the crack propagation speed for given external load. It is shown that
the maximum crack speed is slower than the sound speed contrary to the case studied by Langer
and Nakanishi. Is is also demonstrated that the crack speed does not grow quickly as the externally
applied stress is increased beyond a threshold stress if the friction stress is comparable with the
distortion stress. In the case of no cohesive stress, a divergence around the crack tip exists, but the
velocity strengthening friction makes it weaker than the ordinary inverse square root divergence.

PACS number(s): 62.20.Mk, 46.30.Nz, 81.40.Np, 91.30.Bi

I. INTRODUCTION

Propagation of a single straight crack is the simplest
problem of fracture dynamics. A difficulty of fracture dy-
namics is that even such an “elementary” process involves
a variety of processes and has not been fully understood
yet.

In conventional theory based on elastodynamics [1],
crack tip motion is analyzed using the energy balance
condition that the energy flow into the crack tip should
be equal to the energy required to open a new surface.
Such a theory gives the Rayleigh surface wave speed as
the maximum crack speed. On the other hand, the ex-
perimentally observed maximum crack speed is often far
below the Rayleigh speed [2], and it has also been re-
ported that steady crack propagation could be dynami-
cally unstable [3]. Such an instability is difficult to un-
derstand within the conventional framework of elastody-
namics. There are also numerical simulations that show
crack propagation much slower than the sound speed [4].

Recently several theoretical analyses [5-11] have been
done from a more “microscopic” point of view and it has
been pointed out that dissipation could have an impor-
tant effect on crack propagation [7-9,11].

In this paper, we study the effects of surface friction
on crack propagation theoretically. We consider the sim-
plest case, namely, steady propagation of a single straight
mode-III crack in a two-dimensional elastic material with
cohesive stress and surface dissipation. This type of
model has been studied recently by Langer and Nakan-
ishi (LN) [9] and they have developed a Wiener-Hopf
technique to obtain steady solutions, a technique which
will be used for the present model.

The difference between the present model and that of
LN is that they considered the surface dissipation caused
by a viscosity term while we consider surface friction.
LN pointed out that viscous dissipation acts as a singu-
lar perturbation in the model and could bring about an
effective threshold for an external load to induce crack
propagation. This effective threshold can be much larger
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than the Griffith threshold determined by energy bal-
ance. They also found that supersonic crack propagation
accompanied by shock wave radiation is possible for the
model. In the present model, on the other hand, dissipa-
tion comes from the surface friction that is proportional
to the slipping velocity. This term is not a singular per-
turbation but we will show that it has some remarkable
effects on crack propagation.

The main results for the present model are the follow-
ing. Without cohesive stress, the divergence of the stress
at the crack tip cannot be removed, but the friction stress
makes this divergence weaker than the ordinary 1/y/z
divergence. With cohesive stress, the divergence can be
eliminated by choosing a proper crack speed for a given
external load. By using the condition that the diver-
gence should not appear, the crack speed is determined
as a function of external load and it is shown that the
maximum crack speed is smaller than the sound speed;
supersonic crack propagation is not possible. When the
friction is weak, the maximum crack speed is close to the
sound speed and the crack speed reaches the maximum
speed as soon as the external load exceeds the Griffith
threshold, but for stronger friction the maximum speed
could be substantially smaller than the sound speed, and
the crack speed remains small until the externally applied
stress is increased close to the yield stress.

The paper is organized as follows. The model is in-
troduced in Sec. II and the equations to be solved by
the Wiener-Hopf method are derived in Sec. III. In Sec.
1V, the Wiener-Hopf solutions without and with cohesive
stress are obtained, using the formulation developed by
LN. Asymptotic forms and numerical estimates of the so-
lutions are given in Sec. V and the last section comprises
a short discussion.

II. MODEL

The system we study is a single straight mode-III crack
in a two-dimensional elastic material (Fig. 1). We only
consider an antiplane displacement u(z,y,t) to simplify
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TABLE 1. The correspondence between the variables in the original unit system and those in
the dimensionless unit system. W is a length scale defined by W = c¢o/wo. Expressions in the
original unit can be obtained from dimensionless expressions by replacing the lower variables with

the upper ones.

Original unit z/W,y/W  wet

(B/W)u, (4/W)A, (p/W)s  v/co

(Wwo/p)o o

Dimensionless unit T,y t

u, A, 6 v a o

the analysis, and the displacement is assumed to follow
the equation of motion

i(z,y,t) = cAV3u(z, y,t) — wi(u(z,y,t) F A)

(¥y20), (1)

where the dots denote the time derivative and ¢y stands
for the sound speed. The last term in the right hand
side represents the external load to drive a crack running
along the z axis; £ A is the displacement imposed on the
system at y Z 0, and wp is the angular velocity of the
uniform oscillation around v = +£A. This type of load-
ing may not be possible for most experimental configu-
rations, but for large values of W = ¢g/wq the distortion
along the z axis is similar to that of ordinary loading,
namely, similar to the situation where a strip of elastic
sheet with width W is being displaced at the edges by
A.

The crack is assumed to run along the z axis in the —z
direction with the crack tip position (zip(t),0). Thus the
displacement along the z axis is expressed as

0 Tz < Ttip t
u(z,y = +0,t) = { Ul(x,t) {z > ztipgt;% ) @

where U(z,t) is half of a crack opening. We only need to
consider the upper half plane (y > 0) due to the symme-
try.

The stress along the z axis is also needed to solve the
problem, and is given by

ou

_ | o(z,1)

_{ . [ < (1)
y=+0 o0c(U(z,t)) + alU(z,t)

[z > 2up(8)]
(3)

where p is the elastic modulus, o(z,t) is the stress ahead
of the crack tip, and o.(U) is the cohesive stress that de-

FIG. 1. Mode-III crack propagation in a two-dimensional
elastic sheet.

pends upon the displacement U(z,t). The term ol (z,t)
with the positive constant @ > 0 represents velocity
strengthening friction stress acting on the crack surface,
the effect of which on the crack propagation is the subject
of the present work.

We have formulated our problem to solve Eq. (1) with
the boundary conditions (2) and (3). What is pecu-
liar to the present type of problem is that the functions
U(z,t) and o(z,t) in the boundary conditions are un-
known and should be determined by solving the prob-
lem. The Wiener-Hopf method can be used for this type
of boundary condition problem and the technique has
been developed by LN to obtain a steady solution.

To simplify notation, we will employ the unit system
where ¢p = wo = p = 1 except for the last section. The
expressions in the original unit system can be recovered
from the dimensionless expressions by using the corre-
spondence in Table 1.

III. STEADY SOLUTION OF PROPAGATING
CRACK

We look for the steady solution which represents the
propagating crack in the —z direction at constant speed
v, namely, the solution depends on z and ¢ only in the
form of =z + vt. Thus, in the coordinate system moving
with the crack at the origin, Egs. (1), (2), and (3) become

(ﬂ% N ;’7) u(e,y) - [u(e,y) - Al =0 (y>0),
()

weu=+0={pe 30, ®

Ou _ | o(x) (x <0)
dy y=+0 B { oc(U(z)) + avlU'(z) (z >0), (6)

where

B=vV1—-v2 (M

and the prime denotes the z derivative. We have assumed

that v is smaller than the sound speed, or smaller than

1 in the units used here. We will see that the maximum

possible crack speed is smaller than the sound speed.
By introducing a new variable

£=z/B, (8)
Eqs. (4) and (6) are expressed as
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8?2 8? (=) = p(—)
(56 + 5 ) wew e -8l =0 w>0), VTR = xR (19)
(9) - _ “dp (1 1
‘I’(i)(k)=¥/1 7(5_piik>9(p)’
oul { o (€) (€ <0) (10) (20)
) | o (U(€)) +aU’ 0), —
Yly=+o oc(U(€)) +aU’'(€) (& >0) 0(p) = tan-" ( p; 1) ’
where P
a=av/p. (11) where kg is a solution of Q(k) = 0 and is given by

From these equations, it becomes obvious that o and v
dependence comes into the problem only in the form of
& defined by Eq. (11).

The formal solution of Eq. (9) with the boundary con-
dition (5) is written as

u(€,y) =

with

A(l—e“y)+/dk (+) (k)e~E(k)y+ike (19)

K(k) = V1 +k2;

where U(*)(k) is the Fourier transform of U(£). The
superscript (+) denotes that U({) is nonzero only for
£ > 0; consequently, U (+)(k) is regular in the lower half
of the complex k plane. The superscript (—) will be used
for the opposite.

Then the boundary condition (10) is translated as

ReK (k) >0, (13)

~QITIE) - 2 6Pk =6k - o
(14)
Q(k) = K (k) + aik, (15)

where ¢ is a positive infinitesimal and () (k) is the
Fourier transform of o(&). &8 (k) is defined by

5D (k) = /0 " dge— g (U (). (16)

IV. WIENER-HOPF SOLUTIONS

From Eq. (14) we should determine both U(+)(k) and
(=) (k). This can be done using the Wiener-Hopf method
[12] following the procedure developed by LN [9].

_ The essential part of the problem is how to factorize
Q(k) into two functions: the one, Q(*)(k), regular in the
lower half plane and the other, Q(‘)(k), regular in the

upper half plane. In the Appendix it is shown that Q(k)
can be factorized as

Qk) = Q(“(k)f)(_)(k), (17)

Fo =K exp[@ ) (k)] (18)
0

QWM (k) =

kozi/\/1+d25ip0.
Note that Q) (k) are normalized as

QM (0) = Q)(0) =

For the large |k| limit, their asymptotic behaviors can be
shown to be

QW (k) ~ kX, QU (k) ~ kX, (21)

where

1
X= = — ;tan_ld. (22)

1
2
In the following, we will employ the formulation devel-
oped by LN.

A. 0. = 0 case

First, in order to see some effects of the friction, we
discuss the case without cohesive stress, namely, o. = 0,
in which case the solutions are denoted by U, and oy.
The Wiener-Hopf decomposition gives

. -1 1A
U5 (k) = 5 (k——ie +

Q(+)( )
- 1) - M(k)} . (24)

—_0)
k i Q) (k)

1A 1

x | — | =

[k (Q(‘)(k)
where M (k) is an entire function to be determined
through physical considerations. If we require that
Uo(§) — 0 as € — +0, we obtain

M(k)) : (23)

If we define

dk etk
5(€) = / SPEnE (25)

then Up () is expressed as
Up(€) = AS (&) (26)

The asymptotic behaviors around the crack tip are ob-
tained from Eq. (21) as
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Us(z) ~ "%, ao(@) ~ o], (27)

where we have used Eq. (8). They should be compared
with the ordinary behavior without the friction term,

Uoo(m) ~ \/5, (700(.’1!) ~ 1/\/|—$' (28)

Since 0 < x < 1/2 from Eq. (22), the velocity strength-
ening surface friction makes the crack tip singularity
weaker than the ordinary one that is described by a stress
intensity factor. Numerical estimates of oo(z) and Up(z)
are shown in Fig. 2 for a = 1 and v =0.1, 0.5, and 0.9
on a logarithmic scale.

B. o. # 0 case

In the presence of the o term, this divergence can be
eliminated by chosing an appropriate crack speed v as
we will see. The Wiener-Hopf decomposition of Eq. (14)
gives

A -1 1A N
U (k) = oD ®) [k — AH)(’C)J ) (29)
FONH) = o = QO(h)
Y AC)
- (Q(—)(k) 1) +A (k)] . (30)
where

~(+)

- dz 1 6¢7(2)

AE) (k) = / — ) 31
(k) == cw 2miz —k Q(-)(2) (31)

and C*) (C(7)) is an integral path that runs infinitesi-
mally above (below) the real axis (Fig. 3). In deriving
Egs. (29) and (30), we have set the undetermined entire
function M(k) = 0, using the same argument as that in
the o, = 0 case.

In the presence of the cohesive force, we can impose
the condition that the stress ahead of the crack tip o(§)
should not diverge as £ — —0. In Fourier space, this
condition is translated as

#M50(3) o), @@

PR TR ™ Pl TTN

| PRI
—4

10° 102 Il 10

FIG. 2. The log-log plot of stress o(z) (a) and crack open-
ing Uo(z) and (b) in the case of no cohesive stress for a = 1
and v =0.1, 0.5, and 0.9 from top to bottom. The dot-
ted-dashed lines represent the slopes —x (a) and 1 — x (b)
for each parameter.

2

k

FIG. 3. The integral paths C®) in the complex z plane.

and the expansion of A(~)(k) in powers of 1/k gives us

A= / ~ do (UE)T(E), (33)
where
e—iké
1) = | g@_—)(k)- (34)

With this relation (33), U(*) (k) of Eq. (29) can be trans-
formed into real space as

€
() = - / de's(€ — €)
d
&

Equations (33) and (35) are coupled through U (), and
the crack speed v comes into the equations through &
and &; thus v can be determined from Eqgs. (33) and (35)
as a function of the external load A for a given set of
material parameters, namely, a and the parameters that
characterize o.(U).

<[ T ar e - )L o U . (35)
i

V. NUMERICAL ANALYSIS FOR A SIMPLE
COHESIVE STRESS

It is possible to estimate Eqgs. (33) and (35) in the case
of the simple cohesive stress given by

(0<U <36)

U>3), (36)

oe(U) = { o

where o, is a yield stress and § is the region of the cohe-
sive stress (Fig. 4). Note that the energy needed to open

0 5 U

FIG. 4. The cohesive stress o, as a function of the displace-
ment U.
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the crack is twice do, per unit length for this cohesive
stress.
Then the condition (33) becomes

&¢
A _ [Taer, (37)

Oy 0

where

&e=42/vV1—v? (38)

and £ is the length of the cohesive region. This length of
the cohesive region should be determined by

U(&l) = 61
which turns out to be
5 &t 13
— = déT de'S (€
== [Care [ase) (39)

from Egs. (35) and (36).

For given material parameters oy, 4, and a, the crack
speed v and the cohesive region length £ can be deter-
mined as functions of the external load A from Egs. (37)
and (39).

(1) Griffith threshold. In the v — 0 limit, the func-
tions S(£) and T'(£) become

SO =T =e/vrE (v=0); (40)

thus, from Egs. (37) and (39) we obtain the Griffith
condition A = Ag with

1AL = bay, (41)

namely, the crack starts moving when the crack opening
energy balances with the elastic energy stored in the ma-
terial. We call the threshold A¢ the Griffith threshold.

(2) Mazimum crack speed.  The largest possible ex-
ternal load is oy, beyond which the material breaks ev-
erywhere and a propagating crack is not possible. At
A = oy, & — oo because of Eq. (37) and the integral

/Om dET(E) = Q(—1>(0) _1 (42)

Thus, in this limit, Eq. (39) becomes

5 o0 Cogen L]y Gmax
a_,,:/o d£T(£)/0 d£S(£)—§[1 &xznu+1]'

(43)

For a given value of § /o, we can obtain from Eq. (43) the
maximum value of &, or &max, from which the maximum
crack speed vmax is calculated for given a. Note that
8/0y cannot be larger than 1/2 in the present model.

In Fig. 5, ¥max is shown as a function of a for
§/0,=0.01 (a), 0.001 (b), and 0.0001 (c). The maximum
crack speed vpax goes to the sound speed in the § /o, — 0
limit, but it can be substantially smaller than the sound

0.0 o b 1w s b

0 5 10 15 20

FIG. 5. The maximum crack speed vUmax vs a for
é/0o. =0.01 (a), 0.001 (b), and 0.0001 (c).

speed for large o and relatively large 6/0,.

(3) Asymptotic ezpressions. When 6/0, is small,
then £ <« 1 and the asymptotic expressions for Egs. (37)
and (39) can be obtained as

S I A
Ac  Vamvitar P\ X o it ar

X [(1 —x)msin(mx) (1 + &2)3/2]x (i>x‘1/2 )

Ty
(44)
£=p(1—-x)msin(rx) (1+ 072)3/2 (Ui) , (45)
v

where I'(z) is the gamma function. These expressions are

valid for
av ]
—— | — )| K1 46
V1-v? (ay> (46)

(4) Crack speed.  The numerically estimated crack
speed v is plotted against A/A¢ on a semilogarithmic
scale for 6/0,=0.001 and a = 0.1 (a), 1 (b), 3 (c), and
10 (d) in Fig. 6 with the asymptotic expression (44).

1.0

0.5

0.0 =~

FIG. 6. The crack speed v vs the external load A/Ag on
semilog scale for §/o. = 0.001 and a =0.1 (a), 1 (b), 3 (c),
and 10 (d). The dotted lines show the asymptotic expression
(44).
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It can be seen that the asymptotic expression is very
close to the full solution for the whole parameter region
calculated in the figure. For small a, vnayx is close to the
sound speed and v becomes close to vmax as soon as A
becomes greater than Ag. On the other hand, for larger
a, the crack speed v stays small until A gets close to o,.

(5) Cohesive region length. The numerically esti-
mated length of the cohesive region £ is plotted against
the crack speed v for §/0,=0.001 and a = 0.1 (a), 1 (b),
3 (c), and 10 (d) in Fig. 7 with the asymptotic expres-
sion (45). The cohesive region length £ becomes longer
as v becomes larger except for the plots of a = 10; in the
a = 10 case, £ gets shorter when v is close to 1, which
is due to the factor /1 —v2 in Eq. (38), the “Lorentz
contraction.” £ becomes infinite at v = v, for each a.

(6) Crack opening.  The crack opening U(z) is shown
in Fig. 8 for 6/0, = 0.001, @ = 1, and v = 0.5. The
dashed line represents Up(x) for the case of 0. = 0 and
the dot-dashed lines show the slope 1—x = 1/2+tan™ ! &
and 2 — x, which take values of 0.667 and 1.667, respec-
tively, for the parameters above. It can be seen that the
crack openings for the o, # 0 case and the o, = 0 case
are almost identical outside the cohesive zone, namely,
outside the region of z where U < é/o. = 0.001 in
the present case. The asymptotic behavior (27) for the
0. = 0 case can be seen for U < 0.1 and the asymptotic
behavior within the cohesive region for the o, # 0 case,

U(z) ~ 27X (z—0), (47)

is also seen.

It should be noted that the slope of U(z) diverges log-
arithmically at z = £ as

U(z) ~—In|z — £ (z~9), (48)

due to the discontinuity of o.(U) in the present simple
form of the cohesion stress (36). This divergence will be
absent if we use a continuous cohesive stress.

10_4-"""""
0.0 0.5 1.0
(4
FIG. 7. The cohesive region length £ vs the crack speed v on
a semilog scale for §/o. = 0.001 and a =0.1 (a), 1 (b), 3 (c),
and 10 (d). The dotted lines show the asymptotic expression
(45).

10°

D

FIG. 8. The crack opening U vs = on a log-log scale and
on a linear scale (inset) for a = 1, § /0. = 0.001, and v = 0.5.
The cohesive stress is operative below the shaded line, namely,
for U < é§/0.. The dashed line shows Up(z) for the case
without cohesive stress. The dotted-dashed lines indicate the
lines with slope 1 — x (upper one) and 2 — x (lower one).

VI. DISCUSSION

Both LN and we studied the effects of surface dissipa-
tion on crack propagation. The difference between their
model and the present one is the origin of dissipation; in
their model, the effect of surface dissipation comes from
the surface viscosity; namely, the term —n(8%U/8z2) in-
stead of the friction term aU/ in Eq. (3). One of the
physical situations where such friction may operate is an
earthquake fault in a subduction zone, and the veloc-
ity strengthening friction should usually cause aseismic
motion. For seismic motion, velocity weakening or slip
weakening friction has to be considered, but the math-
ematical nature of the problem differs from the present
one.

The velocity strengthening friction force acts as a trac-
tion force on the crack surface and the crack opening
around the crack tip becomes Up(z) ~ !X (0 < x < 1),
which is weaker than the ordinary /z opening without
traction. Since the stress singularity is a direct result of
the crack opening, this weaker crack opening results in
a weaker stress singularity oo(x) ~ |z|~X than the or-
dinary one. Note that there is no 1/4/z region outside
since the traction force due to the friction is operative
over the whole crack surface.

The crack speed is determined by the condition that
the stress at the crack tip should not diverge, or the so
called “Barenblatt condition.” If the crack speed does
not satisfy this condition, the stress ahead of the crack
tip diverges as o(z) ~ 7% with 0 < x < 1/2. This
should be contrasted to the case with the viscosity term
studied by LN, where a d-function singularity at £ = 0
appears if the crack speed does not satisfy the condition.

Let us discuss the parameter region that should be ap-
propriate for most real situations. In the following, we
use the original unit system. The parameter W = c¢p/wo
is the length scale over which the externally applied dis-
tortion extends. The parameter § is the maximum dis-
placement where the cohesive stress is operative, and
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T T
1.0 1
u° r 4

S~
S 1
(b)

05 .
F B
© ;

0.0 L
logAG log A logAy

FIG. 9. The logarithm of the external load A vs the crack
speed v in the pé/Woy, — 0 limit for (Wwo/p)a =0.1 (a), 1
(b), and 10 (c). The original unit system is used.

therefore the ratio ué/Woy, (or §/0, in the dimension-
less units) is the ratio of the stress that should appear if
the external displacement were & to the yield stress, in
other words, the ratio of the cohesive region size to the
displacement that would be needed to generate the yield
stress o, without stress concentration. This ratio should
depend on the physical situation but we expect it to be
very small in general.

In this small ué/Wo, limit, the maximum crack speed
Umax approaches the sound speed ¢y as may be seen from
Eq. (43). It is important, however, to realize that this
does not mean the effects of friction are negligible in this
limit.

Consider the A dependence of the crack speed v. The
speed v grows from 0 t0 vpax as A changes from Ag to
Ay = Woy/u; thus, in the pé/Wo, — 0 limit, we obtain
from Eq. (44)

InA—InAg 2 _I(Wwo
t o

_ ’U/Co
1 \/1—*(1)/60)2) ’

InA, —InAg 7 0
(49)

where we present the expression in the form that the left
hand side changes from 0 to 1 as v changes from 0 to co.
This is plotted in Fig. 9 for (Wwo/p)a =0.1, 1, and 10.

As can be seen from the figure, for a 2 p/Wwo the
crack speed does not grow rapidly toward the sound
speed co after A exceeds Ag. The parameter value
a ~ p/Wuwq corresponds to the situation that the fric-
tion stress and the distortion stress are of the same order.
Note that d(v/co)/d(A/Ag) — 0 for any value of a in the
limit of ué/Wo, — 0 because the ratio A,/Ag diverges.

In conclusion, the surface dissipation can have impor-
tant nontrivial effects on crack propagation.
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APPENDIX

The detailed derivation of the factorization (17)—(21) is

given in this Appendix. Q(k) can be expressed formally
as

k o U
Q(k) = exp[ln Q(k)] = exp [/(; dz%T(zz))] . (A1)

Note that the last integral can be done in the complex z
plane and depends upon the integral path from the origin
to z = k. The path determines the branch to evaluate
Q(k) on its Riemann surface.

Using the Cauchy formula, the integrand can be de-
composed as

Q@) _ (5 4 7Oz A2
o) =)+ 7(2) (A2)
with
) () = a1 Q@)
O I e T (43)

where C(#) in the complex ¢ plane are the same as those
indicated in Fig. 3.
Then we can proceed as

A (k) = /k dzf®)(2)

0
N d 1 Q'
=) S i 60

- Lomm (D) ag o

Since the only singularities of Q'(¢)/Q(¢) are a simple
pole at ( = ko and cuts along the imaginary axis, the
path C(%) can be deformed into the thick paths shown in
Fig. 10. Using the fact that the integral along the circle
with infinite radius vanishes, we obtain

FIG. 10. The integral paths in the complex { plane to esti-
mate Eq. (A4). The original paths C*) can be deformed into
the thick lines with arrows. The solid circle and the thick lines
along the axes denote the pole and the cuts of the integrand
of Eq. (A4).
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. k *° dp ip
(+) - 0 _ i 4
A (k) ln(ko—k) /1 o In (ip—k)

< (C?'(ip+e) _ Q:I('ip—f)) , (A5)
Qir+e) Q(ip—¢)
A W) = _/1 ;_iln (ipzf-k)
(Q’( ip+e) c‘g'(—ip—e)) (ae)
Q(—ip+e) Q(—ip—e)

where € is a positive infinitesimal. By performing partial
integrations, these become

A (k) = (k )

dp (1
[ 2(G-43)e. @
AOk) = / L(G-w)w 4
with
6(p) = tan™" (—V ”;p‘ 1) , (A9)

and this completes the factorization.
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